Comparison of feature-level learning methods for mining online consumer reviews

نویسندگان

  • Li Chen
  • Luole Qi
  • Feng Wang
چکیده

The tasks of feature-level opinion mining usually include the extraction of product entities from consumer reviews, the identification of opinion words that are associated with the entities, and the determining of these opinions’ polarities (e.g., positive, negative, or neutral). In recent years, two major approaches have been proposed to determine opinions at the feature level: model based methods such as the one based on lexicalized hidden Markov model (L-HMMs), and statistical methods like the association rule mining based technique. However, little work has compared these algorithms regarding their practical abilities in identifying various types of review elements, such as features, opinions, intensifiers, entity phrases and infrequent entities. On the other hand, few attentions have been paid to applying more discriminative learning models to accomplish these opinion mining tasks. In this paper, we not only experimentally compared these methods based on a real-world review dataset, but also in particular adopted the Conditional Random Fields (CRFs) model and evaluated its performance in comparison with related algorithms. Moreover, for CRFs-based mining algorithm, we tested the role of a self-tagging process in two automatic training conditions, and further identified the ideal combination of learning functions to optimize its learning performance. The comparative experiment eventually revealed the CRFs-based method’s outperforming accuracy in terms of mining multiple review elements, relative to other methods. ∗Corresponding author. Tel: +852 34117090; Fax: +852 34117892; Postal address: 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong Preprint submitted to Expert Systems with Applications February 20, 2012

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Lda and Synonym Lexicon Based Approach to Product Feature Extraction from Online Consumer Product Reviews

Consumers are increasingly relying on other consumers’ online reviews of features and quality of products while making their purchase decisions. However, the rapid growth of online consumer product reviews makes browsing a large number of reviews and identifying information of interest time consuming and cognitively demanding. Although there has been extensive research on text review mining to ...

متن کامل

Feature extraction in opinion mining through Persian reviews

Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

A Rule-Based Approach For Effective Sentiment Analysis

The success of Web 2.0 applications has made online social media websites tremendous assets for supporting critical business intelligence applications. The knowledge gained from social media can potentially lead to the development of novel services that are better tailored to users’ needs and at the same time meet the objectives of businesses offering them. Online consumer reviews are one of th...

متن کامل

MEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection

Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012